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ABSTRACT

The ability to measure and compensate for power line harmonics has become a

growing area of interest because of today's commonly used electronic equipment. Since

the number and relative magnitudes of the harmonics on the power line are a function

of the load, estimation of an equivalent load can be accomplished. Because of variation

in the load, the need for an adaptive algorithm is imperative. Thus far, few algorithms

for determining harmonic contents have not dealt with the problem associated with the

limited power of the line conditioner.

This thesis deals with a previously known harmonic compensating algorithm and

introduces a new algorithm which both compensates for harmonic noise and estimates the

load as a transformation matrix depending on the associated transfer function of the

active line conditioner in use.
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I. INTRODUCTION

A. BACKGROUND

Many of today's electronic devices i.e., computers, fluorescent lights and

microwave ovens, effect power distribution due to their nonlinear consumption of power.

The result is irregular current and voltage wave forms on the power line. Active line

conditioners provide a way of eliminating the accompanying noise on a power line by

independently adjusting the active and nonactive components, thereby maintaining a

constant sinusoidal bus voltage.

iL • line~ar]

ic. line • atv
CcondltionerI

VB FnonactiveI

Figure 1.1 Bus with Linear and Nonlinear Loads and Active Line Conditioner

The amount of voltage distortion is a function of the nonlinear load distribution,

their current spectra, topology and frequency dependance within the network. For a

nonsinusoidal voltage [Ref 1]

VB = v2-Vsinat + VI Vhsin(hcat + a') (1.1)
h"I

i II i iil • I I1



with linear and non linear loads drawing a total current.

iL d o + IV (1.2)

where

.,= V'21,cosejsinmt (1.3)

is the active component of the fundamental current,

i,1 = V211 sknOtcoswt (1.4)

is the reactive component of the fundamental current and

iH = •2 Iin(hat +a,, + eh) (1.5)
1101

is the harmonic current. The apparent power can be described as follows.

2V + 2V2)( + (1.6)

Equation 1.6 can be expressed in phaso- form,

S=IV(PI + PH)2 Q+ (1.7)

where

P, = Yi' c1se0 h (1.8)

represents the Fundamental Power Frequency Active Power. The Harmonic Active

Power is,

2



Ps= • V~4c~7wOh (1.9)
h.!

and

Q, = V1IsinO1  (1.10)

is the Power Frequency Reactive Power. The Harmonic Reactive Power is

QH = E VhSinh(1.11)

The components of Q, are generated by specific harmonic voltages and harmonic

currents (in no particular order) [Ref 2]. Because of the vector properties of the reactive

power components, control or cancellation is possible using vectors of identical frequency

and magnitude with opposite phase. Therefore, the Harmonic Reactive Power can be

eliminated by introducing or drawing current from the power line which is 1800 out of

phase with each respective harmonic. With this in mind, the conditioner current is as

follows,

ic = iCal + iol + Cil (1.12)

where i., and iCl are the conditioner Fundamental Active and Reactive currents

respectively, and

ic11 = vJ Ichsin(hcat + ah + Yh) (1.13)

is the conditioner harmonic current.

3



B. ACTIVE LINE CONDITIONERS

Active line conditioners serve a dual purpose. First, they adjust one or more loads

thereby changing the active power. Secondly, they are capable of controlling the

amplitude and phase characteristics of the nonreactive currents icrI and icu which affect

the value of Q, and/or Q. [Ref 2,4]. By using a solid state switching network at a

frequency much greater then that of the fundamental, the line current is modulated in

order to maintain the boundaries of a desired template z, shown in Figure 1.2. For a

narrow boundary of error 6, the conditioner current ic is unaffected by the fluctuations

(the zig-zaging) within the boundary area. By adjusting the template waveform through

a feedback circuit, the conditioner current spectrum can be altered to produce anoverall

current IT that is as close to sinusoidal as possible. To do this, the load current iL is

monitored to determine the harmonics present. Then by injecting a current ic from the

line conditioner which is 180' out of phase with that of the load, the unwanted harmonics

can be cancelled out.

1. Equivalent Circuit Modeling

For medium and low voltage systems, the best practical means of adjusting

the conditioner current ic is by minimization of the voltage distortions at the conditioner

location on the bus [Ref. 5]. The voltage at the conditioner node can be represented by

N

Vnh = E ZXh1Ixh (1.14)
x-1

where

I., = Bus x harmonic current phasor of order h

4



template z

ic

0 1r

Figure 1.2 Bus Voltage, Line Conditioner Template and Current

Zm, = Harmonic Complex Impedances of the node
N = Number of independent nodes

A Norton equivalent circuit for the bus has the equivalent harmonic current

N

I hh 7- Ys E ZXIXh (1.15)
z4* z"B

where Y.,s = 1/Z., is the self-admittance of the node for the harmonic h. Figure 1.3

shows the Norton equivalent circuit with the associated harmonic currents and load Zsh.

i1i2 . .ih Rsh v Bic

Sh

Figure 1.3 System Approximation using Norton Equivalent Circuit

Where Zsh is given in Equation 1.16,
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ZSh = RsA + jho)L s h = ZRBhIZBh (1.16)

and Z,, is the load impedance of the harmonic order h.

From the equivalent load Z., the voltage due to the offending harmonics V,,

can be defined as

Vfh = IehZsh (1.17)

For a linear resistance and inductor Rsh and LA,, a conditioner current ic equal

to the negative of I, would eliminate the harmonic voltage VH,. It is important to note

that active line conditioners are inherently limited in their maximum current output,

therefore, negating the entire value of I, may not be possible. Although limited, any

reduction of the harmonic noise, especially of lower order, significantly improves the

recognition of the fundamental.

6



U. SURVEY OF PERVIOUS WORK

A. ADAPTIVE ESTIMATION OF HARMONIC VOLTAGE

The best fitting sinusoidal wave to a nonsinusoidal periodic wave is the fundamental

[Ref. 1]. The error associated with such a system can be written.

e = v. - v, - vH + vc (2.1)

Since the signals vfH and v, are periodic, the error, e, is statistically stationary.

Therefore, the expected value of the square of the error E results in a quadratic function

which has a guaranteed minimum for real physical signals [Ref. 6]. Then by minimizing

the mean square of the error (MSE), the signal should be nearly identical to that of the

fundamental. By representing the error voltage due to the harmonics as the sum of

weighted sines and cosines, an error surface for each weight can be defined thereby

making the calculation of a minimum possible. Figure 2.1 shows the block diagram for

such an adaptive system.

xS2, xS3 "" Xsh and xc2, xc3 ... Xch represent discrete versions of the harmonics

associated with the power line, and C2, C3, - Ch and S2, S3, --- Sh are the weights of the

associated harmonic. The correction voltage to the conditioner is defined by

Yk = 1: [Shsin(h(kTIN) + Chcos(hcakTIN)] (2.2)
h*1

where k = time index
T = 1lf= 21r/w = period or one cycle

7



Figure~~~~~igt 2.Vlcuiga o dpieSse

nn il in ill | I | Filter

ek

S~MSE .

-(S,. Xs3 xsh Xc2 Xc3 Xch

Figure 2.1 Block Diagram of Adaptive System

N = number of samples per cycle

The Active Line Conditioner current is given by

icH = KDE [Shsin(hot) + Cscos(hat)] (2.3)
hol

where D = The gain of the D/A converter
K = Converter constant of the Conditioner in (A/V)

The discrete error ek as a function of voltage becomes

ek = VCk + VHk (2.4)

where va, and vHk are represented by

Vck = KDE Zsh[Shsin(hmakTIN) + Chcos(hwkTIN)] (2.5)

8 1



Via = V42 ZhIh[cosIJhsin(hwkTIN)+ sin3cos(h~akT/N)J (2.6)
h,•1

Simply setting the sine and cosine weights equal to

Sh = -2(Iehcos3h)/KD (2.7)

Ch = -V (,(Ihcos h)IKD

requires the error to be zero. Since the actual load impedance Zsh is not known and

changes with time, an estimation of the sine and cosine weights is performed by the MSE

processor using the following linear prediction.

$k.1 = Sk + (-Vs)p/h (2.8)

Ck+l = Sk + (-Vc)l/lh

where

VS = aCe /as (2.9)
VC = aelac

are the error gradients of the sine and cosine weights respectively, and t is a constant

called the acceleration factor which is directly related to both the rate of convergence,

and the magnitude of any over-shoot in reaching the minimum. The h term is used to

scale the acceleration factor by an amount proportional to the harmonic being evaluated.

This allows for faster convergence of lower order harmonics, the largest error, without

driving the higher order unstable. Figure 2.2 shows a quadratic error surface as a

function of a single weight.

9



s = E{e 2 k}

S k -

0~

ERROR
< , SURFACE

I I I I

Ck Ck+1 Ck+4 Ck+3

WEIGHT
Figure 2.2 Single Weight Error Surface Example

Starting on the left side where Ck+, > Ck and k+1 < ek the gradient is negative

and the value of e converges toward the minimum. If the value of the weighting factor

produces a higher error then the previous ek+4 > Ck+., an over shoot occurs, but the

gradient remains negative thereby predicting a smaller weighting value then the current

one and e again converges toward the minimum. The same result would be obtained for

an initial weight greater then that need to minimize e.

B. LINEAR LOAD SIMULATION

A program for testing the validity of the adaptive algorithm was written for

MATLAB using the parameters in Figure 2.3 and a noise component equating to ten

percent Total Harmonic Distortion (THD) assuming only odd harmonics up to the

twenty-first [Ref. 1]. The fundamental frequency is assumed to be a standard 60 Hz

outlet and the line conditioner to have no power limitation.

10



Y 2. .1' 
1.857H VC

Figure 2.3 Linear Load Equivalent Circuit Model

Figure 2.4 shows the MSE for the first three offending harmonics and their

convergence to zero, all well under one second using an acceleration constant of 3e-7.

The THD in Figure 2.5 also follows a similar pattern since it is most affected by the

lower order harmonics and becomes one-one hundredth of its original value after just one

half second, or thirty iterations. Figure 2.6 shows the weighting coefficients of the sine

and cosine for the first three offending harmonics. With the help of a simple

trigonometric identity, these values can easily be shown to correspond to the magnitude

and phase of the original noise components. Also note that the final weighting values

where reached asymptotically without any over-shoot indicating the choice of the

acceleration coefficient is optimal with respect to requiring minimum power from the

active line conditioner.

11



Mean Square Error
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Figure 2.4 Mean Square Error for Linear Load
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Total Harmonic Distortion
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Figure 2.5 Total Harmonic Distortion Linear Load
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C. NONLINEAR LOAD SIMULATION

The inductor in Figure 2.3 was substituted for the one shown in Figure 2.7 to

produce a nonlinear response in the load. The nonlinearity was chosen to provide

approximately ten percent deviation from that of the linear case.

i i 0 H 1.8.. VBc

T, ___1_1

Figure 2.7 Nonlinear Load Equivalent Circuit Model

The nonlinear load results were very similar to those from the linear with small

deviations in the THD and identical results for the weighting coefficients. Some of these

values are summarized below in Table 2.1.

TABLE 2.1 TOTAL HARMONIC DISTORTION FOR LINEAR AND NONLINEAR
LOADS

Time (sec) .0167 .0333 .0667 .133 .250 .500 1.00

Linear 9.327 8.849 6.381 3.300 1.047 .123 .0011

Nonlinear 9.245 8.874 6.410 3.427 1.120 .120 .0012

15
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Figure 2.8 Mean Square Error Nonlinear Load
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Figure 2.9 Total Harmonic Distortion Nonlinear Load
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Weighting Coefficients
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Figure 2.10 Sine & Cosine Weighting Coefficients for Nonlinear Load
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MI. OPTIMAL ESTIMATION WITH SYSTEM IDENTIFICATION

A. MODELING THE NETWORK

The model used for optimal estimation is very similar to that found in Figure 2.1

with the exception that the impedance, although unknown, will be estimated along with

minimizing the harmonic error. The block diagram model is shown in Figure 3.1 with

the impedance of the present load represented as a square matrix H. It should be noted

that this model can be used for different system transfer function input/output

relationships other than current to voltage.

w(n)

u(n) H ._ e(n)

Figure 3.1 Optimal Estimation Impedance Model

Since the harmonic noise w(t) is assumed to be harmonics of the fundamental it can

be represented as a sum of sinusoids shown in Equation 3.1 for a continuous signal.

19



w(t) = EAcoe(27.xfot) + Bxsin(2w.xfot) (3.1)
z-2

For a discrete sampled system Nyquist criteria must be maintained, therefore the

sampling frequency, fs, must be an integer value of the fundamental which is greater then

twice the highest harmonic frequency to be eliminated. The continuous frequencies are

converted to discrete under the following conditions.

2%1 2 i I where I < Nh< -- (3.2)
fS M 2

From this the disturbance w(t) can be represented discretely in matrix form as

w(n) _ W T x(n) (3.3)

where

WT [o, 0, A2, B2A 3, B3, .. AN, EN]

1 1 2 2
x(n) -[cos2z n, sin21cln, cos2x-n, sin2n-n,"' (3.4)

Al M M M
cos2it N n, sin2 hT n]T

M M

Because the harmonic noise does not change instantaneously with changes to the

load, it is reasonable to assume that it is periodic. By dividing the time scale into

periodic intervals of length N, which is a multiple of M, then for all n x(n) = x(n + M)

= x(n + N).

20



N (k + I)N (k + 2)N

Figure 3.2 Discrete Time Period

By defining the control input current to be

u(n) = UTn kN W u u kN + N-1 (3.5)

where uk is a weight vector to be determined. The error can now be written discretely

in terms of x(n) as

e(n) = WTx(n) + u4THTx(n) (3.6)

Note that for a linear impedance H becomes a diagonal matrix, otherwise it is not.

Since w(n) is the signal which is to be eliminated, by using its frequency

information in the control input, u(n), it will provide some of the needed information to

negate it. The remaining control information will come from a recursive estimation of

its Fourier coefficients which is the main basis of this algorithm.

B. CONTROL

Since the value of H can be estimated through the use of system identification

techniques, it can be assumed to be known for the purpose of determining the control

necessary to eliminate the harmonic noise. From Equation 3.6 it is easy to see that WT

and ukrHT are scalars which can be combined to represent the error weights for each

21



sample point over a single interval, N, of the fundamental. The error associated with

a single sample n is shown in Equation 3.7.

e(n) =• x(n) (3.7)

Now each term in Equation 3.6 can be detined in terms of x(n).

Due to the periodicity of the harmonic frequencies, the frequency components can

be eliminated by subtracting the error of the k" interval from the (k-I)' interval resulting

in a difference equation of just weighted vectors shown below.

eTx(n) = WTx(n) + u'H Tx(n)

eklIx(n-N) = WTx(n-N) + ukýlHTx(n-N) (3.8)
T T T T

- ekl = ](u - Uk 1 )

After some manipulation, Equation 3.8 can be written as

Q(ek - ek1l) = Uk - UkI (3.9)

where Q = H-'

Now that the control is in terms of the error and an admittance matrix Q, using a

linear predictor similar to that in Equation 2.8 can be used.

Uk = u,_, - mQek,- (3.10)

where a is a scalar defined on the interval -I < a < 1.

The error, e., can be driven to zero for Q not equal to the null set.

22



C. ESTIMATION

Because the load to the bus changes over time some method of updating the value

of H to those changes must exist in order for the controller to effectively reduce the

harmonic noise present. Estimation of the admittance matrix Q can easily be

incorporated with the control through system identification methods using a recursive

least squares (RLS) algorithm. By choosing estimates of the control and error to be

fik = Uk - Uk-l (3.11)
ik = ek - ekl

Equation 3.9 reduces to a matrix form of the RLS equation.

k = T (3.12)

Although Equation 3.12 is in matrix form, it is important to remember that the

estimate of each row of Q is a unique difference equation of the associated control and

error coefficients of their respective frequency. In other words, even though the

frequency vector x(n) is not found in Equation 3.12 the relationship between the third

harmonic error and control coefficients remains linear. It is well known that the output

of a linear system differs from the input only in magnitude and phase, therefore the

system output y(t) can be written in terms of u(t) as follows:

23



yk(t) = IHkJAkCoS(2 nkf.t+ak) + IHkJBksin( 2 nkf.t+ak) = (3.13)

Ckcos(2nkf.t) + Dksin(2nkf.t)

where C, and D, reflect the magnitude and phase changes of the system on the input

coefficients A, and Bk. With the help of a trigonometric identity, Equation 3.13 can be

written in a more convenient matrix form JRef 71.

[Ck = [ coscck -srnak ][k] (3.14)
Dk =J k

[DkJ k Sinck CosakJ[Bk]

Since Hk, cosci and sinak are scalars Equation 3.14 can be arrange in a recursive form

similar to that of Equation 3.12 as follows

[Ckl k-Bk] Yk (3.15)

Dk = Bk Ak ZkZ

where Y' and Zk represent the estimate for the product of the magnitude and phase

change for the cosine and sine terms respectively of a given harmonic. Equation 3.15

represents the estimates of the coefficients for just a single harmonic of the system and

can be thought of as a building block of the matrix RLS Equation 3.12.

Now all the needed information is available for implementation of a Kalman filter

based RLS estimation [Ref 8, 9]. Figure 3.3 shows a block diagram representation of

the system model with the estimation algorithm.

1. Considerations in Applying FFT to Harmonic Analysis

Since this algorithm emphasizes the use of Fourier coefficients, some aspects

of using the Fast Fourier Transform (FFT) will be addressed. The FFT algorithm has

24



W
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Figure 3.3 System Diagram with Estimation and Control

useful applications in power system networks, but can produce erroneous information if

not applied correctly. Certain assumptions about the FF1 must be understood to avoid

false representation of the associated signal [Ref 7].

"* The signal is stationary (constant magnitude).

"* Each frequency in the signal is an integer multiple of the fundamental.

"* The sampling frequency is equal to the number of samples times the fundamental
frequency used in the algorithm.

"• The sampling frequency meets Nyquist criteria.

D. SIMULATION RESULTS

In testing the optimal estimation algorithm the same harmonic noise components

from the MSE in Chapter II were used. Since the impedance matrix of the system is

estimated using RLS any linear transformation matrix for H can be used. For the

purpose of this research a simple diagonal matrix with a linear progression from one to
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forty-two was used. Figure 3.4 shows the control input to the line conditioner for the

three highest offending harmonics. As in the MSE case, the values are reached

asymptotically without any overshoot, thus showing the stability of the algorithm. The

optimal estimation algorithm demonstrated superior robustness and stability compared to

that of the MSE with respect to the linear predictor constant a. The optimal estimator

provided stable and consistent results for positive values of a up to one. While

individual harmonics in the MSE case were highly sensitive, and often grew unstable,

with changes in a.
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Figure 3.4 Control Input to Conditioner Uk
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Figure 3.5 shows the total harmonic distortion for several values of a as a function

of time.

Total Harmonic Distortion

10

9

8

9 ..... ............................. ................... ......... .........

apha=.l

S....................................

S..... ..... ........ .. .................................................... . .

00.2 0.4 0.6 0.8
Time (sec)

Figure 3.5 Total Harmonic Distortion (T.))
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An additional piece of information provided by the optimal estimation algorithm

is an adaptive estimate of the load impedance in the form of a matrix, H. Table 3.1

gives a break down of several of the actual and estimated matrix values along with their

respective errors.

TABLE 3.1 ACTUAL AND ESTIMATED IMPEDANCE MATRIX COEFFICIENTS

Harmonic 3rd 5th 7th 9th 11 th

Actual 6 7 10 11 14 15 18 19 22 23

Estimated 6 7 10 11 14 15 18 19 22 23

Percent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
error

It is important to point out that only harmonic frequencies which are present in the

offending noise will produce impedance coefficient estimates for the H matrix. This is

simply the result of having no error to drive the RLS equation. If noise other than an

odd harmonic of the fundamental were present an estimate of that impedance would

appear in the matrix H.
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IV. CONCLUSIONS

A. MSE ALGORITHM VS. OPTIMAL ESTIMATOR

When the load is linear, the optimal estimation algrithm proved to be much more

effective in eliminating the associated harmonic noise and more robust with respect to

changes in the gain of the linear prediction, as indicated in Equations 2.8 and 3.10. In

addition to elimination of the harmonic noise, the optimal estimator provides a linear

representation of the present system load in the form the impedance matrix H. The

impedance information of the H matrix is beneficial in helping to determine the proper

specifications of the active power line conditioner for the particular application.

B. FUTURE RESEARCH

Because the optimal estimation algorithm uses the Fast Fourier Transform of the

error signal it is currently limited to the linear case. Nonlinearities in the error signal

present a difficult obstacle to overcome using standard Fouier transforms. Investigation

into adapting the optimal estimation algorithm for nonlinear contingencies would be

highly beneficial and would provide a better and more accurate model of the power line

load impedance.
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APPENDIX A - (MATLAB) ADAPTIVE LINEAR MODEL

% % THESIS PROGRAM I
% % JOEL ZUPFER
% % 17 MAY 93
% % REVISED 18 NOVEMBER 93
% % SIMULATION OF CIRCUIT FIGURE 2.3

clear
R = 700; %MODELLED RESISTOR VALUE (OHMS)
L = 1.857; %MODELLED INDUCTOR VALUE (HENERY'S)
f = 60; %FUNDAMENTAL FREQUENCY (HZ)
N = 120; %NUMBER OF SAMPLES PER CYCLE
lag - 120; %LAG FOR CALCULATION OF THE MSE
Cycle input('Number of cycles = '); %NUMBER OF CYCLES IN SIMULATION
check input('Number of cycles between gradient calcu!ations = ');

%CYCLES BETWEEN GRADIENT CALCULATIONS
totN N*round(Cycle/2)*check; %TOTAL NUMBER OF POINTS IN SIMULATION
Delay = N*check; %COUNTER FOR CHECKING ERROR VOLTAGE
accel = 3e-7; %ACCELERATION FACTOR
Wt = [.51 .16 .056 .035 .025 .025 .02 .02 .015 .015]';

%INITIAL WEIGHTS OF ODD HARMONICS
H = (3 5 7 9 1113 15 17 19 211'; %ODD HARMONICS OF FUNDAMENTAL FREQUENCY
P = pi*[1/3 1/4 1/5 3/2 4/2 5/2 1/6 2/6 3/6 8/61'; %INITIAL PHASE OF ODD HARMONICS
mu = H.^(-1).*accel; %ACCELERATION FACTOR ADJUSTED FOR HARMONICS

%%%%%%%%%%%%%%INITIALIZE PARAMETER MEMORY%%%%%%%%%%%%%%%%%
Ih = zeros(length(Wt),totN); %HARMONIC CURRENT
Ic = zeros(length(Wt),totN); %CONDITIONER CURRENT
If = zeros(l,totN); %FUNDAMENTAL CURRENT
Ve = zeros(iength(Wt),totN-1); %ERROR VOLTAGE
Vf = zeros(l,totN-1); %FUNDAMENTAL VOLTAGE
Sh - zeros(length(Wt),round(Cycle/2)+2); %HARKLcNIC SINE WEIGHTS
Ch = zeros(length(Wt),round(Cycle/2)+2); %HARMONIC COSINE WEIGHTS
MSE = zeros(length(Wt),Cycle+ 1); %MEAN SQUARE ERROR
thd = zeros(1,Cycle+ 1); %TOTAL HARMONIC DISTORTION
GradSh = zeros(length(Wt),round(Cycle/2)); %GRADIENT OF SINE HARMONICS
GradCh = zeros(length(Wt),round(Cycle.'2)); %GRADIENT OF COSINE HARMONICS

%%% % %oh%%%(%H%%%%*%%%%% INITIALCONDW TIONS% %%%C %%%%F %N %%%%%%O%%
Sh(:,2) = ones(length(Wt),1)./H.*.1; %INITIAL WEIGHTING FACTOR FOR SINE HARMONIC
Ch(:,2) -- ones(length(Wt), l)./H.*. IINITAL WEIGHTING FACTOR FOR COSINE HARMONIC

If(l) = a0*sqrt(2);
If(2) = 9.9*sqrt(2); %PEAK CURRENT VALUES
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%%%%%%%%%%%%%%%%%%%MAIN PROGRAM%%%%%%%%%%%%%%%%%%%%%%
% %% %% %% % % %%%BUS VOLTAGE WITH NO CONDITIONER CURRENT%% %% %% % %% %%
for k = 3: N- I

sample = H.*2*pi*k/N:, %DISCRETE SAMPLE POINT
If(k) = IO*sqrt(2)*cos(2*pi*k/N); %FUNDAMENTAL CURRENT
lh(:,k) = Wt.*cos(sample + P); %HARMONIC CURRENT OF THE LOAD
Ic(: ,k) = (Sh(>.1 ) *sin(sample) + Ch(:, 1). *cos(sample)); %CONDITIONER CURRENT
Vf(k- 1) = (If(k) - If(k-2))*(L*N*f/2) + If(k-l)*R; %FUNDAMENTAL VOLTAGE
Ve(:,k-I) = (lh(:,k) + Ic(:,k) - Ih(:,k-2) - lc(:,k-2)).*(L*N*f/2) + (Ih(:,k-I) + Ic(:,k-l)).*R;

%BUS ERROR VOLTAGE
end

MSE(:,I) = sqrt(mean(Ve(:,I:k-1)'.^2))'; %MEAN SQUARE OF BUS ERROR VOLTAGE
thd( I) =sqrt(sum(max(V.P(: ,2:k- 1)'). ^2/2)* 100/(nux( Vf(2:k- 1))fsqrt(2));

%TOTAL HARMONIC DISTORTION

final= k+I; %STEP INDEX

%% %% % %%% % %% %%BUS VOLTAGE WITH CONDITIONER CURRENT% %% % %%% %% %% %
for index =I :round(Cycle/2)

for k = final:Delay + final-I
sample = H.*2*pi*k/N-, %DISCRETE SAMPLE POINT
If(k) = 1O*sqrt(2)*cos(2*pi*k/N); %FUNDAMENTAL CURRENT
Ih(:,k) = Wt.*cos(sanlple + P); %HARMONIC CURRENT OF THE LOAD
Ic(: ,k) = (Sh(:, index+ +1). *sin(sample) + Ch(:, ,index). *cos(sample));

%CONDITIONF -R CURRENT
Vf(k-1) = (If(k) - 1f(k-2))*(L*N*f/2) + lf(k-i)*R; %FUNDAMENTAL VOLTAGE
Ve(-.,k-1) = (Ih(:,k) + Ic(:,k) - Ih(:,k-2) - lc(:,k-2)).*(L*N*f/2) + (Ih(:,k-1) + Ic(:,k-l)).*R;

%BUS ERROR VOLTAGE
end

MSE(:,2*index) = sqrt(mean(Ve(:,k-1-Iag:k-1)'.'2))W; %MEAN SQUARE OF ERROR VOLTAGE
thd(2*index) = sqrt(sum(max(Ve(: ,K- 1-lag:k- 1)'). ^2/2)* lOO/(niax( Vf(k- 1-lag:k- 1))Isqrt(2));

%TOTAL HARMONIC DISTORTION
final = k+l; %STEP INDEX
GradSh(: ,index) = (MSE(: ,2*index) - MSE(: ,2*index 1 )). /(Sh(:, index+ 1) - Sh(: ,index));

%SIN HARMONICS GRADIENT CALCULATION
Sh(:, index + 2) = Sh(: ,index +1) - GradSh(:, index). *mu. *MSE(: ,2*index);

%PREDICTED SINE WEIGHTING FACTOR

for k = final:Delay + final-I
sample = H.*2*pi*k/N; %DISCRETE SAMPLE POINT
If(k) = 1O*sqrt(2)*cos(2*pi*k/N); % FUNDAMENTAL CURRENT
Ih(:,k) = Wt.*cos(sample + P); %HARMONIC CURRENT OF THE LOAD
Ic(: .k) = (Sh(: ,index + ). *sin(sample) + Ch(: ,index + 1).*cos(sample));

%CONDITIONER CURRENT
Vf(k-1) = (If(k) - If(k-2))*(L*N*f/2) + If(k-1)*R; %FUNDAMENTAL VOLTAGE
Ve(:,k-1) = (Ih(:,k) + Ic(:,k) - lli(:,k-2) - Ic(:,k-2)).*(L*N*f/2) + (Ih(:,k-1) + Ic(:,k-1)).*R;

%BUS ERROR VOLTAGE
end
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MSE(: ,2*index +1) = sqrt(mean(Ve(: ,k- 1 -Iag:k- I)'. ̂ 2))'176MEAN SQUARE OF ERROR VOLTAGE
thd(2*index + 1) = sqrt(sum(max(Ve(: ,k- I1-lag: k- 1)'). ^2/2)* 1 00f(max( Vf(k- I -lag: k- 1 ))/sqrt(2));

%TOTAL HARMONIC DISTORTION
final =-k+1, %STEP INDEX
GradCh(-: ,index) = (MSE(: ,2*index + 1) - MSE(:, .2*index)). /(Ch(:, index+ +1) - Ch(: ,index));

%COSINE HARMONICS GRADIENT CALCULATION
Ch(:,index+2) = Ch(:, index + 1) - GradCh(:, index). *mu. *MSE(:,2*index + 1);

%PREDICTED COSINE WEIGHTING FACTOR
end

%%%%%%%%%%%%%%%%%%%%PLOT SECTION%%%%%%%%%%%%%%%%%%%%%%
plot(Ve' );title(' Error Voltage');
xlabel( 'Samples (N)');ylabel( 'Voltage (V)');pause
plot( Ic' );title( 'Conditioner Current');
xlabel( 'Samples (N)');ylabel('Current (I)');pause
plot(MSE');grid;title(' Expectation');grid;
xlabel( 'Samples (N)');ylabel( 'Magnitude');pause
plot(Sh');title('Sin weighting coefficients');grid;
xlabel( 'Samples (N)');ylabel('Magnitude');pause
plot(Ch') ;title('Cosine weighting coefficients' ); grid;
xlabel( 'Samples (N)');ylabel('Magnitude');
plot(GradSh');grid;title('Grad Sb');
xlabel('Samples (N)');ylabel( 'Magnitude');pause
plot(GradCh');grid;title( 'Grad Ch');
xlabel( 'Samnples (N)');ylabel('Magnitude');
plot(thd);title('Total Harmonic Distartion');grid
xlabel('Number of Cycles');ylabel('Percent (%)');
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"APPENDIX B - (MATLAB) ADAPTIVE NONLINEAR MODEL

% % THESIS PROGRAM 2 (NON LINEAR LOAD)
%% JOEL ZUPFER
%% 28 MAY 93
% % REVISED 23 NOVEMBER 93
% % SIMULATION OF CIRCUIT FIGURE 2.4

clear
R = 700; %MODELLED RESISTOR VALUE (OHMS)
Li = 1.857; %MODELLED INDUCTOR VALUE (HENERY'S) INITIAL (NONLINEAR L)
f = 60; %FUNDAMENTAL FREQUENCY (HZ)
N = 120; %NUMBER OF SAMPLES PER CYCLE
lag = 120; %LAG FOR CALCULATION OF THE MSE
Cycle = input('Number of cycles = '); %NUMBER OF CYCLES IN SIMULATION
check = input('Number of cycles between gradient calculations = ');

%CYCLES BETWEEN GRADIENT CALCULATIONS
totN = N*Cycle*check %TOTAL NUMBER OF POINTS IN SIMULATION
Delay = N*check; %COUNTER FOR CHECKING ERROR VOLTAGE
accel = 3e-7; %ACCELERATION FACTOR
Wt = [.51 .16 .056 .035 .025 .025 .02 .02 .015 .015]';

%INITIAL WEIGHTS OF ODD HARMONICS
H = [3 5 7 9 11 13 15 17 19 211'; %ODD HARMONICS OF FUNDAMENTAL FREQUENCY
P = pi*[l/3 1/4 1/5 3/2 4/2 5/2 1/6 2/6 3/6 8/6]'; %INITIAL PHASE OF ODD HARMONICS
mu = H."(-1).*accel; %ACCELERATION FACTOR ADJUSTED FOR HARMONICS

%%%%%%%%%%%%%%%%INITIALIZE PARAMETER MEMORY%%%%%%%%%%%%%%%
lh = zeros(length(Wt),totN); %HARMONIC CURRENT
Ic = zeros(length(Wt),totN); %CONDITIONER CURRENT
If = zeros(l,totN); %FUNDAMENTAL CURRENT
Ve = zeros(length(Wt),totN-1); %BUS VOLTAGE
Sh = zeros(length(Wt),round(Cycle/2)+2); %HARMONIC SIN WEIGHTS
Ch = zeros(length(Wt),round(Cycle/2)+2); %HARMONIC COS WEIGHTS
MSE = zeros(length(Wt),Cycle + 1); %MEAN SQUARE ERROR
thd = zeros(1,Cycle+ 1); %TOTAL HARMONIC DISTORTION
GradSh = zeros(length(Wt),Cycle); %GRADIENT OF SIN HARMONICS
GradCh = zeros(length(Wt),Cycle); %GRADIENT OF COS HARMONICS

%%% % %n%%%%%%%%%%%%%%lNITALCONDITIONS%%%%%%%%%%%%%%%%%%%%
Sh(:,2) = ones(length(Wt),1)./H*.1; %INITIAL WEIGHTING FACTOR FOR SINE HARMONICS
Ch(:,2) -- ones(length(Wt), I)./H*. I,1/INMTAL WEIGHTING FACTOR FOR COSINE HARMONICS

If(l) = 10*sqrt(2,;
If(2) = 9.9*sqrt(2); PEAK CURRENT VALUES
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%%%%%%%%%%%%%%%%%%%MAIN PROGRAM%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%BUSVOLTAGE WITH NO CONDITIONER CURRENT%%%%%%%%%%%
for k = 3:N-1

sample = H.*I2*pi*k/N; %DISCRETE SAMPLE POINT
If(k) = I0*sqrt(2)*cos(2*ri *kIN); % FUNDAMENTAL CURRENT
Ih(:,k) = Wt.*cos(sampie + P) %HARMONIC CURRENT OF THE LOAD
Ic(:,k) = Sh(:,1).*sin(sample) + Ch(:,l).*cos(sample), %CONDITIONER CURRENT
L = Li *ones(10, 1) J1 (I +abs((Ih(:,k- 1) +Ic(:,k- 1))/l10)); % NONLINEAR INDUCTANCE
Vf(k-1) = (If(k) - If(k-2))*(Li*N*f12) + If(k-1)*R; %FUNDAMENTAL VOLTAGE
Ve(:,k-1) = (Ih(:,k) + lc(:,k) - Ih(:,k-2) - Ic(:.k.2)).*(L*N*f12) + (Ih(:,k-1) + Ic(:,k-1)).*R;

%BUS VOLTAGE
end

MSE(:,1)= sqrt(mean(Ve(:, 1:k-1)' .^2))'; %MEAN SQUARE OF ERROR VOLTAGE
thd( 1) = sqrt(sum(max(Ve(:.2 :k- 1)'). ^2/2)* l00/(max( Vf(2 :k- 1))fsqrt(2));

%TOTAL HARMONIC DISTORTION
final = k+I; %STEP INDEX

%%% % %% %% %% % %%BUS VOLTAGE WITH CONDITIONER CURRENT% %% % %% %% %%% %
for index =2 :Cycle

for k final: Delay+ final- I
sample =H.*2*pi*kIN; %DISCRETE SAMPLE POINT
If(k) = 10*sqrt(2)*cos(2*pi*k/N); % FUNDAMENTAL CURRENT
Ih(:,k) =Wt.*cos(sample + P); %HARMONIC CURRENT OF THE LOAD
Ic(: ,k) =Sh(:, index). *sin(sample) + Ch(:, index- 1). *cos(sainple);

%CONDITIONER CURRENT
L = Li *ones( 10,1) J1(I +abs((Ih(: ,k-1) +Ic(: ,k-1))/10))$ NONLINEAR INDUCTANCE
Vf(k-1) =(If(k) - If(k-2))*(Li*N*fI2) + If(k-1)*R; %FUNDAMENTAL VOLTAGE
Ve(:,k-1) = (Ih(:,k) + Ic(:,k) - Ih(:,k-2) - Ic(:,k-2)).*(L*N*f/2) + (Ih(:,k-1) + lc(:,k-1)).*R;

%BUS VOLTAGE
end
MSE(: ,2*index-2) = sqrt(mean(Ve(: ,k-1-I:k-1)' .'2))';

%MEAN SQUARE OF ERROR VOLTAGE
thd(2*index) = sqrt(sum(max(Ve(: ,k-1 -Iag:k- 1)').^2/2)* 100/(max( Vf(k-1 -lag:k- 1))Isqrt(2));

%TOTAL HARMONIC DISTORTION
final = k+l; %STEP INDEX
GradSh(: ,index) = (MSE(: ,2*index-2) - MSE(: ,2*index-3)). /(Sh(:, index) - Sh(: ,index- 1));

%SINE GRADIENT CALCULATION
Sh(: ,index+ 1) = Sh(: ,index) - GradSh(:, index). *mu. *MSE(: ,2*index-2);

%PREDICTED SINE WEIGHTING FACTOR
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for k = final: Delay+tfinal- I
sample = H.*2*pi*kIN; %DISCRETE SAMPLE POINT
If(k) = 10*sqrt(2)*cos(2*pi*k/N); % FUNDAMENTAL CURRENT
Ih(:,k) = Wt.*cos(sample + P); %HARMONIC CURRENT OF THE LOAD
Ic(:,k) = Sh(:, index). *sjn(sample) + Ch(:, index). *cos(sample);

%CONDITIONER CURRENT
L = Li *ones( 10.1) ./1(I +abs((Ih(: ,k- 1) + Ic(: ,k- 1))/10)% NONLINEAR INDUCTANCE
Vf(k-1) = (If(k) - If(k-2))*(Li*N*fI2) + If(k-1)*R; %FUNDAMENTAL VOLTAGE
Ve(:,k-1) = (Ih(:,k) + Ic(:,k) - Ih(:,k-2) - Ic(:,k-2)).*(L*~N*f/2) + (Ih(:,k-1) + Ic(:,k-1)).*R;

%BUS VOLTAGE
end

%MEAN SQUARE OF ERROR VOLTAGE
thd(2*index +1) sqrt(sum(max(Ve(: ,k- 1 -lag:k- 1)'). ^2/2)* 1 00/(rnax( Vf(k- 1 -Iag: k- 1 ))/sqrt(2));

%TOTAL HARMONIC DISTORTION
final k+l; %STEP INDEX
GradCh(:, index) = (MSE(: ,2*index-l) - MSE(: ,2*index-2)).I(Ch(:, index) - Ch(: ,index- I));

%COSINE GRADIENT CALCULATION
Ch(: ,index+ 1) = Ch(: ,index) - GradCh(:, index). *mu. *MSE(: ,2 *index- 1);

%PREDICTED COSINE WEIGHTING FACTOR
end

%%%%%%%%%%%%%%%%%%%PLOTTING SECTION%%%%%%%%%%%%%%%%%%%%
plot(Ve');title('Error Voltage');
xlabel('Samples (N)');ylabel('Voltage (V)');pause
plot(ic');titte('Conditioner Current');
xlabel('Samples (N)');ylabel('Current (I)');pause
plot(MSE');grid;title('Mean Square Error');grid;
xlabel('Samples (N)');ylabel('Magnitude');pause
plot(Sh');title(' Sin weighting coefficients');grid;
xlabel('Samples (N)');ylabeI(CMagnitude');pause
plot(Ch');title('Cosine weighting coefficients');grid;
xiabel('Samples (N)');ylabel('Magnitude');
plot(GradSh');grid;title('Grad Sh');
xlabel('Samples (N)');ylabel('Magnitude');pause
plot(GradCh');grid;title('Grad Ch');
xlabel('Samples (N)');ylabel('Magnitude');
plot(thd);title('Total Harmonic Distortion');grid
xlabel('Number of Cycles');ylabel('Percern (%)');
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APPENDIX C - (MATLAB) OPTIMAL ESTIMATION MODEL

%% THESIS PROGRAM 3
% % JOEL ZUPFER
%% I JUNE 93
% % REVISED 30 NOVEMBER 93
%% SIMULATION OF CIRCUIT FIGURE 2.3

clear
R = 700; %MODELED RESISTOR VALUE (OHMS)
L = 1.857; %MODELED INDUCTOR VALUE (HENERY'S)
f = 60; %FUNDAMENTAL FREQUENCY (HZ)
Wt = [0 0.510.16 0.056 0.035 0.025 0.025 0.02 0.02 0.015 0.0151;

%WEIGHTS OF THE HARMONICS INITIAL CONDITION
H = 1 23456789 10 11 12 13 14 15 16 17 18 19 20211;

%HARMONICS OF FUNDAMENTAL FREQUENCY
P = pi*[0 0 1/3 0 1/4 0 1/5 0 3/2 0 4/2 0 5/2 0 1/6 0 2/6 0 3/6 0 8/61;

%PHASE OF HARMONICS INITIAL CONDITION
M = 2*length(H); %NUMBER OF SAMPLE POINTS/PERIOD
ALPHA = 0.75; %WEIGHTING FACTOR FOR CONTROL DETERMINATION
Cycle = input('Number of cycles = '); %NUMBER OF CYCLES IN SIMULATION

%%%%%%%%%%%%%%%INITIALIZE PARAMETER MEMORY%%%%%%%%%%%%%%

D = [1:421; %DIAGONAL ELEMENTS OF H
HL = diag(D); %TRANSFER MATRIX OF SYSTEM LOAD
Qhat = eye(M)*.1; %INITIAL GUESS FOR INVERSE OF H
Q = zeros(2*length(H),2*length(H)); %INITIAL VALUE OF Q MATRIX
theta0 = zeros(l,1); %THE ESTIMATION FOR THE DC COMPONENT
theta42 = zeros(1,1); %THE ESTIMATION FOR THE 21st HARMONIC
theta = zeros(2,2*(length(H)-l)); %THE ESTIMATION OF THE SYSTEM IMPEDANCE
GO = 50; %INITIAL VALUE OF GAIN MATRIX(MEASURE OF UNCERTAINTY)
G42 = 50; %INITIAL VALUE OF GAIN MATRIX
G = [ones(2*H(length(H)- 1), 1),zeros(2*H(length(H)-1),2),ones(2*H(length(H)- 1), 1)1*50;

%INITIAL VALUE OF GAIN MATRIX
If = zeros(1,M); %INITIALIZE THE FUNDAMENTAL CURRENT
Vf = zeros(1,M); %INITIALIZE THE FUNDAMENTAL VOLTAGE
Ve = zeros(1,M); %INITIALIZE THE NOISE VECTOR
X = zeros(M,M); %INITIALIZE THE MATRIX OF SUM OF COS & SIN
E = zeros(M,Cycle); %ACTUAL ERROR
Ek = zeros(M,Cycle); %PERIODIC ERROR
Ehat = zeros(M,Cycle); %ESTIMATED PERIODIC ERROR
Uk = zeros(M,Cycle); %PERIODIC CONTROL INPUT
Uhat = zeros(M,Cycle); %ESTIMATED PERIODIC CONTROL INPUT
Yk = zeros(M,Cycle); %PERIODIC SYSTEM OUTPUT
thd = zeros(1,Cycle); %TOTAL HARMONIC DISTORTION
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%%%%%%%%%%%%%%%%%%%%MAIN PROGRAM%%%%%%%%%%%%%%%%%%%
for n = O:M-l

If(n+ I) = lO*sqrl(2)*cos(2*pi*n);
Sample = H.*(2*pi*n/M);
X(: ,n+ 1) = reshape(jcos(Sample);sin(Sample)J ,2*Iength(H), 1);

%MATRIX FOR SAMPLED VALUE AS SUM OF COS & SIN
end

W = reshape([cos(P).*Wt;sin(P).*WtJ ,2*length(H), 1);
%HARMONIC CURRENT WEIGHT VECTOR

lb = w* %THE HARMONIC CURRENT OF ONE PERIOD
Vf(l) = (If(2) - lf(M))*(L*M*f/2) + lf(l)*R; %FUNDAMENTAL VOLTAGE
Ve(:,1) = (lh(:,2) - th(:,M)).*(L*M*f/2) + Ih(:,1).*R; %ERROR VOLTAGE

for n = 3:M
Vf(n-1) = (If(n) -lf(n-.2))*(L*M*f/2) + lf(n-1)*R; %FUNDAMENTAL VOLTAGE
Ve(:.n-l) = (Ih(:,n) - Ih(:,n-2)).*(L*M*fI2) + Ih(:,n-l).*R; %ERROR VOLTAGE

end

Vf(M) = (If(l) - If(M-I))*(L*M*f/2) + If(M)*R; %FUNDAMENTAL VOLTAGE
Ve(:,M) = (Ih(:,l) - Ih(:,M-1)).*(L*M*f/2) + Ih(:,M).*R; %ERROR VOLTAGE
MAGf = max(Vf)ISQRT(2); %RMS VALUE OF THE FUNDAMENTAL
Yk(:, 1) = H*'Uk(:,1); %SYSTEM OUTPUT
E(:,1) = Ve'; %ACTUAL ERROR
Ek(:,l) = (fftrig(E(:, 1)))'; %PERIODIC ERROR COEFFICIENTS FREQUENCY DOMAIN
Uk(:,2) = Uk(:,l1) - ALPHA*Qhat*Ek(:,l1); %CONTROL COEFFICIENT UPDATE

for I = 1:Iength(Ek(:,l1))/2 -1
MAG(i,l) = sqrt(sum(Ek(2*i:2*i+ l,l)).A2)); %SUM OF THE ERROR VOLTAGES

end

MAG(Iength(Ek(:, l))12, 1) = Ek(Iength(Ek(: .1)), );
thd(1) = sqrt(sum(MAG.A2/2))*lOO/(MAGf); %TOTAL HARMONIC DISTORTION

for k =2:Cycle %RECURSIVE LOOP FOR ERROR CALCULATION
Ek(:,k) = fftrig(Ve)' + H*Uk(:,k); %ACTUAL ERROR IN FREQUENCY DOMAIN
E(:,k) =ifftrig(Ek(:,k))'; %TIME DOMAIN OF ERROR
Ehat(:,k) = Ek(:,k) - Ek(:,k-l); %ESTIMATED ERROR
Uhat(:,k)= Uk(:,k) - Uk(:,k-l); %ESTIMATED CONTROL

thetaO = theta3 + (Uhat(l,k) - Ehat(l,k)*thetaO)*GO*Ehat(l,k)/(l + Ehat(l,k)*GO*Ehat(l,k));
%RECURSIVE LEAST SQUARES ESTIMATION OF COEFFICIENT

GO = GO - GO*Ehat(l,k)*Ehat(l,k)*GO/(l + Ehat(l,k)*GO*Ehaz(l,k));
%UPDATE OF THE GAIN

Q(1,1) = thetaO;
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for h =l:2*H(length(H)-1)
gain = reshape(G(h,:),2,2); %GAIN MATRIX IS 2X2
if rem(h,2) = =1; %FOR THE ODD LOOPS

Phi = Ehat(h+1:h+2,k)'.*t1 -11;
else

Phi = flipud(Ehat(h:h+ 1,k))'; %FOR THE EVEN LOOPS
end

theta(:,h) = theta(:,h) + (Uhat(h+ I,k) - Phi*theta(:,h))*gain*Phi'/(1 + Phi*gain*Pbi');
%RECURSIVE LEAST SQUARES ESTIMATION OF COEFFICIENTS

gain = gain - gain*Phi'*Phi*gain/l( + Phi*gain*Phi');, %UPDATE OF THE GAIN
G(h,:) = reshape(gain, 1,4); %CHANGE GAIN MATRIX BACK TO 1X4
Q(h+l,h+l:h+2) = theta(:,h)'; %PLACE ESTIMATES WITH IN THE Q MATRIX

end

theta42 =theta42 + (Uhat(42,k) - Ehat(42,k)*theta42)*GO*Ehat(42 ,k)/...
(I + Ehat(42,k)*GO*Ehat(42,k));

%RECURSIVE LEAST SQUARES ESTIMATION OF COEFFICIENT
G42 =G42 - G42*Ehat(42,k)*Ehat(42,k)*G42/( 1 + Ehat(42,k)*G42*Ehat(42,k));

%UPDATE OF THE GAIN

Q(42,42) =theta42; %PLACE ESTIAMTES WITH IN THE Q MATRIX
Uk(:,k+ 1) = Ukc(:,k) - ALPHA*Q*Ek(:,k); %UPDATE THE CONTROL
Yk(:,k) =ifftrig(H*Uk(:,k))'; %SYSTEM OUTPUT

Nfk = ffirig(Ve + Yk(:,k)')'; %ERROR AFTER NEW CONTROL INPUT

for i = :Iength(Nfk(:,k))/2 -I
MAG(i,k) = sqrt(sum(Nfk(2*i:2*i + 1),k).^2)); %MAGNITUDE OF ERROR VECTOR

end

MAG(length(Nflc(:,k))/2,k) = Nfklc(ength(Nfk(:,k)),k); %SUM OF THE ERROR VOLTAGES
thd(k) Sqrt(sum(MAG(:,k).A2/2))*100/(MAGf); %TOTAL HARMONIC DISTORTION

end

%%%%%%%%%%%%%%%%%%%PLOT SECTION%%%%%%%%%%%%%%%%%%%%%
plot(E');title('Actual Error');grid;
xlabel('Samples (N)');ylabel('Voltage (V)');pause
plot(Ek');title('Periodic Error');grid;
xlabel('Samples (N)');ylabel('Voltage (V)');pause
plot(Ehat');title('Estimated Error');grid
xlabel('Samples (N)');ylabel('Vottage (V)');pausc
plot(Uk');title('Control weighting coefficients');grid;
xlabel('Samples (N)');ylabel('Magnitude');pause
plot(Uhat');title('Estimated Control weighting coefficients');grid;
xlabel('Samples (N)');ylabel('Magnitude');pause
plot(Yk');title('System output');grid;
xlabel('Samples; (N)');ylabcl('Magnitude');
plot(thd); title('Total Harmonic Distortion');grid
xlabel('Number of Periods (k)');ylabel('Percent (%)');
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(function w = fftrig(x)
% w =fftrig(x)
% it computes the fft coefficients of the vector x
% in trigonometric form.
% x(n)= wI +w2*cos(2pi/N) +w3*sin(2pi/N) +w4*cos(4pi/N) +w5*sin(4pi/N) +.

%..+ w(N-2)cos(2pi(N/2- 1)/N) +w(N- 1)sin(2pi(N/2- 1)/N) +w(N)cos(pi n);
% where N =Iength(x), assumed to be a power of 2 (if not x is padded with 0's)
X = fft(x);
N =Iength(X);
Xr = real(X);
Xi =imag(X);
w(1) = Xr(l)/N;
k=1:1:(N/2)-l;

w(2*k) =2*Xr(7:(N/2))/N;
w(2*k+ 1) =-2*Xi(2:(N/2))/N;
w(N) =Xr((N/2) + 1)/N;

end % fftrig

function x = ifftrig(w)
% x=ifftrig(w)
% compute time sequence x from trig, coefficients w.
% See FFTRIG
N =Iength(w);
Xr(l) = w(1)*N;
Xi(1) =0;
k=1:1:(N/2)-1;

Xr,(2:(N/2)) = N*w(2*k)/2;
Xi(2:(N/2)) =-N*w(2*k+ 1)/2;
Xr((N/2) + 1) =N*w(N);
Xi((N/2) +1) =0;
X =Xr+sqrt(-1)*Xi;
X(N-k + 1) =conj(X(k+ 1));

x = real(ifft(X));
end % ifftrig
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